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Summary

We explore models for the natural history of breast cancer, where the main
events of interest are the start of asymptomatic detectability of the disease
(through screening) and the time of symptomatic detection (through symp-
toms). We develop several parametric specifications based on a cure rate struc-
ture, and present the results of the analysis of data collected as part of a

Sofia University “St. Kliment Ohridski”,

motivating study from Milan. Participants in the study were part of a regional
Sofia, Bulgaria

o breast cancer screening program, and their ten-year trajectories were obtained
4U0C Osservatorio Epidemiologico, ATS,

Milan, Italy from administrative data available from the Italian national health care system.

We first present a tractable model for which we develop the likelihood contri-
Correspondence

Laura Bondi, MRC Biostatistics Unit, East
Forvie Building, Cambridge Biomedical
Campus, Cambridge CB2 OSR, UK.
Email: laura.bondi@mrc-bsu.cam.ac.uk

butions of the observed trajectories and perform maximum likelihood inference
on the latent process. Likelihood based inference is not feasible for more flex-
ible models, and we implement approximate Bayesian computation (ABC) for
inference. Issues that arise from the use of ABC for model choice and param-
eter estimation are discussed, including the problem of choosing appropriate
summary statistics. The estimated parameters of the underlying disease process
allow for the study of the effect of different examination schedules (age range
and frequency of screening examinations) on a population of asymptomatic
subjects.
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1 | INTRODUCTION

Cancer screening is defined as the examination of asymptomatic subjects in order to classify them as likely or unlikely
to be diseased.! Some recent reviews assess breast cancer screening.?> The expected positive aspects of screening are the
reduction in mortality and the avoidance of advanced morbidity. However, along with the benefits there may be negative
effects of screening such as overdiagnosis, overtreatment, and false positive results that may lead to psychological distress.
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Once a screening program is established in a country, it is difficult to conduct randomized trials to assess the effective-
ness of screening. Sound, updated, and country-specific evidence is needed to decide whether to establish breast cancer
screening programs and to identify the optimal screening policy with respect to the age range of the women invited, and
the lag between successive examinations. As a consequence, there is a strong interest in learning about the natural history
of the disease from observational data collected administratively.

Hu and Zelen® discuss a theoretical model for planning screening trials in order to compare mortality rates between
a control group and a screened group. The authors model the natural history of the disease and how the disease could be
detected by regular screening examinations. The work is used for planning the National Lung Screening Trial.

A commentary by Aalen’ introduces a different class of models whose aim is to understand disease processes beyond
the simple survival setting and integrating into the analysis all the information collected at each clinical examination.®°
In Sweeting et al,® the authors implement multi-state Markov models to analyze the longitudinal disease progression
when transition times between disease states are interval censored, and taking into account different assumptions on
the possibly non-ignorable missing data process occurring during follow-up. This setting reflects the screening context
in which, even though examination times are scheduled, subjects can decide not to attend them and the decision to
adhere to the scheduled examinations is possibly not independent of the underlying disease status or of the (perceived or
real) risk of the subject. Similarly, Chen et al® is concerned with the analysis of incomplete longitudinal data, where the
observation process may contain information about the life history of the disease. They consider progressive multi-state
Markov response models where the parameter estimation is performed by maximizing the likelihood function.

An alternative to multi-state Markov models is the modeling of the underlying biological tumour growth as a con-
tinuous process. Recent work!®!! proposes a continuous tumour growth model and derives theoretical results for jointly
estimating tumour growth, time to symptomatic detection and mammography screening sensitivity as a function of
mammographic density. These models evaluate mammography screening in terms of mortality, to estimate overdiagno-
sis, and to estimate the impact of lead-time bias when comparing survival times between screen-detected cancers and
cancers found outside of the screening program. The models are implemented using likelihood-based estimation, with
recent work exploring a likelihood-free approach consisting of calibrating the parameters via summary statistics at the
population level.!2

Another relevant work!? is based on a likelihood-free estimation procedure designed to replicate standardized inci-
dence rates of breast cancer. However, their focus is not on the natural history of the disease, which is only partly estimated
from the data, but on quantifying the magnitude of overdiagnosis for invasive cancers and for carcinoma is situ cases.

The aim of this article is to explore several statistical models to describe the natural history of breast cancer, focusing
on the insurgence of the disease, and on the detection of cases as it progresses from asymptomatic to symptomatic.

In Section 2, we describe the motivating observational study conducted in Milan. While observational studies do not
typically provide trusted evidence to answer the same questions as randomized trials do, here the goal is to reconstruct
the underlying latent process through the probabilistic description of the occurrence and development of breast cancer
from a combination of data obtained from a screening program and from administrative health data streams.

All the models that we discuss can be seen as multi-state semi-Markov models, where the future evolution depends not
only on the current state, but also on the entry time into that state. The estimation procedure that we employ depends on
the complexity of the model. In principle, it is possible to compute the observed data likelihood'* of each model, in order
to find the maximum likelihood estimates for the parameters. However, the likelihood calculation and maximization can
be numerically complicated or not feasible, unless the model has a simple structure.

Section 3 describes the modeling approach, and describes one such simple model for which likelihood inference is
feasible. In Section 4, we move to the Bayesian inferential framework and develop a likelihood-free estimation procedure
based on approximate Bayesian computation (ABC)*’ that allows one to implement a variety of models and to perform
both model selection and parameter estimation on the motivating data. In Section 5, we discuss the use of ABC in this
setting, and close with some final remarks.

2 | THE MOTIVATING DATA

The data that motivated this study concern a cohort of n = 78051 women, aged between 41 and 76 years, resident in the
municipality of Milan, who were invited to participate to the mammographic screening program and in particular to a
study with the acronym of FRiCaM (Risk Factors for Breast Cancer: Fattori di Rischio per il Carcinoma della Mammella),
supported by a specific grant of the Italian League of Cancer Prevention. Italy does not have a universal screening program
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for all regions in the country, but currently all Italian regions have implemented screening programs.'® Screening exam-
inations in Milan are normally offered to women 50-74 years old every two years (recently extended from the previous
50-69 policy), but under specific circumstances high-risk women can also be included in the program. All women had to
be disease-free when they entered the study.

To collect data for the motivating study, a questionnaire was sent by mail or handed out to a total of 151,246 eligible
women who had received no diagnosis of breast cancer at the time of entry, and about 60% of them completed it and
returned it at their upcoming screening examination, or through postal delivery. The date when a woman filled out the
questionnaire (which included the informed consent form) marked her date of entry into the study. Study entry dates
range from January 1, 2003 to December 31, 2007.

The subjects’ health trajectories were obtained from administrative data collected by the Italian National Health Ser-
vice and from the Cancer Registry database. Follow-up ended when an invasive cancer diagnosis occurred or, for women
without an observed diagnosis, when censoring occurred. The censoring date coincides with the earliest among date of
administrative censoring (December 31, 2016), date of cancellation from the study, date of emigration, and date of death.
The median follow-up was 12.29 years.

The available data also include the date of birth, the timing of the screening examinations (either mammograms or
ultrasounds, which we treat equally) that were performed, and the dates of the outside-screening examinations and of the
diagnoses (invasive tumors only). Due to lack of permission to obtain such information, the data did not include the indi-
vidual examination results, and we had to infer whether each examination likely gave a positive or negative result based
on some assumptions. Different assumptions may lead to different conclusions, and our analysis were therefore repeated
under several scenarios. Even when changing the assumptions for the reconstruction of the examination outcomes and
for the dates and kinds of detections, the results did not show considerable change.

Below we present the results obtained under what seemed to be the most plausible set of assumptions, also after
discussion with an investigator who is familiar with the data. In the Supplemental Material, we include results produced
under one different set of assumptions.

For women without an observed diagnosis of breast cancer, we assumed that all the examinations had given a negative
result. For women having a breast cancer diagnosis recorded in the Cancer Registry, we had to determine whether the
detection was symptomatic or asymptomatic, and to establish the date of the last negative examination before detection. A
key piece of information was available from the variable which differentiated between in-screening and out-of-screening
examinations. Indeed, out-of-screening examinations may be due to suspicious symptoms. We first checked if there were
any screening examinations within the six months prior to the diagnosis. If yes, then the last one before the diagnosis was
assumed to have yielded a positive result, and to have led to an asymptomatic detection. In this case the date of detection
was defined as the date of that positive exam.

If, instead, there were no screening exams within 6 months of the date of diagnosis, we classified that detection as
symptomatic, and we set the date of detection equal to the date of the most recent out-of-screening exam, if there were
any within the 6 months prior to diagnosis. If no exams at all were recorded in the 6 months prior to diagnosis, then we
set the date of the symptomatic detection back by a number of days equal to the average shift applied to the symptomatic
detections which had that information (42.6 days).

Once the dates of detection were defined, we picked the last negative exam as the most recent exam performed at least
6 months before the detection. We decided to impose a distance of at least 6 months between the last negative exam and
the detection because most diagnoses are preceded by a few examinations very close to each other, and those were likely
performed to confirm the presence of the tumor.

These limitations of the available data are such that the results of our analyses should be taken with some caution (for
example, no sensitivity/specificity of the examinations can be taken into account). However, also given the large sample
size, we feel that they still provide useful information in particular on the effect of covariates, and most importantly these
analyses let one explore the issues that one must address when developing and estimating disease history models from
administrative data.

Out of the 78,051 women in the sample, 3034 (3.89%) were diagnosed with invasive breast cancer during the observa-
tion period and 75,017 (96.11%) were without diagnosis at the end of their follow-up. The total number of women who
died after breast cancer diagnosis is 380 (12.5%) but here we only studied detection. We do not consider DCIS (ductal car-
cinoma in situ) cases, which were not included in the Cancer Registry database. Under the assumptions described above,
the asymptomatic detections were 572 and the symptomatic ones 2462. The total number of exams was 396,183, per-
formed on 74,345 women. The remaining 3706 women did not undergo any examination during the observation period.
For additional descriptive statistics we refer to Table 1.
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TABLE 1 Descriptive statistics of the data.

Min Median Mean Max

Age at questionnaire 41.30 60.91 60.82 76.85

Age at first exam after entry 41.37 61.02 60.80 84.64

Age at asymptomatic detection 45.05 64.93 64.18 76.23

Age at symptomatic detection 46.40 67.74 67.34 86.35

# screening examinations Mammographies Ultrasounds Total
0 12,215 (0.16) 75,694 (0.970) 12,213 (0.16)
1 21,452 (0.28) 2219(0.028)  21,412(0.27)
2 17,679 (0.23) 131 (0.002) 17,459 (0.22)
3 12,612 (0.16) 7 (0.000) 12,303 (0.16)
>4 14,003 (0.18) 0 14,664 (0.19)

# outside-screening examinations Mammographies Ultrasounds Total
0 8812 (0.11) 62,609 (0.80) 8256 (0.11)
1 10,903 (0.14) 7866 (0.10) 10,283 (0.13)
2 26,900 (0.34) 2699 (0.03) 25,063 (0.32)
3 18,451 (0.24) 1466 (0.02) 17,239 (0.22)
>4 12,985 (0.17) 3411 (0.04) 17,210 (0.22)

Breast cancer diagnoses Yes No
3034 (0.04) 75,017 (0.96)

Observed follow-up Median Mean Min Max
12.29 11.66 0 13.93

Status at end of follow-up (only for non-diseased subjects) Alive Cancelled Dead Emigrated
65,494 (0.873) 232 (0.003) 7410 (0.099) 1881 (0.025)
No Yes Missing*

At least one birth (X;) 11,933 63,935 2183

High level of education (X5) 47,315 29,994 742

Family history of cancer (X;) 47,419 30,562 70

Note: Time is measured from birth (in years).
“There were 2845 subjects with one or more of these covariates missing.

Additional variables, including level of education, comorbidities, family structure and family history of cancer, were
collected by means of a questionnaire filled by the participants. We focused on three dichotomous covariates, which
divide the women in eight groups as shown in Table 2: having had at least one birth X; (0 = no, 1 =yes); level of education
X, (0 =low, 1 = high); and family history of cancer X3 (0 = no, 1 = yes). These are indeed the three non-race main risk
factors for breast cancer (among women with no previous history of the disease).!” In addition to these, we have included
education as a proxy for lifestyle-related factors. Genetic factors and breast density are also often discussed as relevant, but
that information was not available to us. The effect of comorbidities is not as established, also due to the large number of
comorbidities that occur in the population. Our choice of risk factors also allowed us to maintain the dimensionality of the
model tractable, without creating groups that include too few subjects. Table 2 also shows the number of asymptomatic
and symptomatic detections and the median age at detection, both in the total sample and within the eight covariate
groups. Single imputation of missing values was performed on the three covariates by replacing them with draws from
independent Bernoulli variables with parameters equal to the proportion of ones among the non-missing values for each
variable.
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TABLE 2 Observed outcomes in each covariate group and in the total sample.
#Asymp #Symp % Symp Dx Median age Median age

Group (X1,X2,X3) Size Dx (%) Dx Dx Among all Dx Asymp Dx Symp Dx

1 (0,0,0) 3377 142 (4.2%) 27 115 81% 65.49 69.10

2 (0,0,1) 2107 115 (5.5%) 31 84 73% 66.24 66.80

3 (0,1,0) 3430 154 (4.5%) 24 130 84% 59.36 64.99

4 (0,1,1) 3354 153 (4.6%) 23 130 85% 63.70 64.54

5 (1,0,0) 27,964 939 (3.4%) 183 756 81% 65.67 69.69

6 (1,0,1) 14,338 599 (4.2%) 109 490 82% 65.83 68.54

7 (1,1,0) 12,694 479 (3.8%) 98 381 80% 62.95 66.60

8 (1,1,1) 10,787 453 (4.2%) 77 376 83% 62.78 64.45

Total 78,051 3034 (3.9%) 572 2462 81% 64.93 67.74

Note: Ages are measured in years. X; = at least one birth (0: No, 1: Yes); X, = Education level (0: Low/Medium, 1: High); X3 = Family history of cancer (0: No, 1:
Yes).

Asymptomatic Symptomatic
I_ | I Detectability | Detection
------ N
] 1 I ’
Birth Onset T, A Ts

Age (years)

FIGURE 1 A graphical representation of the natural history from onset until detectability of the disease.

Note that the three covariates were assessed at the time of entry into the motivating study. However, given the rather
advanced age at entry, we may consider the first two as being definitively measured at that time. On the other hand,
family history is still potentially evolving (we will study that specific issue in a separate manuscript). In our models we
treat these covariates as baseline covariates that summarize the life-long effect of parity, education and family history on
breast cancer development and evolution.

We now turn to the description of a first, treatable model.

3 | AFIRSTMODEL: CONSTRUCTION OF THE OBSERVED DATA
LIKELIHOOD

All times are measured from birth of the woman. We assume that after the onset of the disease (which may or may not
occur) there is a time interval in which not even a screening examination is able to detect the presence of the disease
(see Figure 1). The two main quantities of interest are the time (from birth) to the start of asymptomatic detectability of
the disease (which we denote by T,) and the time to the symptomatic detection of the disease (denoted by Ts). At time
T, the disease becomes detectable through screening. Between time T4 and Ts the tumor can only be detected through
screening (the “sojourn time,” denoted by A), while at time T the disease becomes evident because of symptoms. In other
words we have Ts = T4 + A. Further, we assume that symptomatic detection occurs exactly when the first symptoms
appear.

While studying the latent evolution of the disease, we are also interested in studying the probability of insurgence of
the disease in a woman’s lifetime. To allow for the direct estimation of such probability, we introduce a cure rate structure,
that is, a proportion of women, which we call the “cured proportion”, denoted by (1 — p) with p € (0, 1), who will never
experience the event of developing breast cancer. This is equivalent to assigning positive probability (1 — p) to the event
{T4 = +00, Ts = +o0}, where the probability p is therefore one of the parameters of the model. The standard terminology
“cure” is however confusing in this context, so we will instead refer to the fraction p of women who will develop the
disease as to the “susceptible” proportion, and to such women as “cases”. Note that these should be considered to be latent
cases and not observed cases.
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We work under the stable disease population assumption, in which the rate of births and the distribution of ages at
tumor onset are constant across calendar time.!! We also assume stationarity of the joint distribution of (T4, A) across
birth cohorts.

Note that the goal is to draw conclusions about quantities that are mostly unobservable. Indeed, both T4 and T are
never observed on any woman, and clearly the observed data would not be a good representation of the latent variables
of interest. First of all, the time to the start of the asymptomatic detectability T, is always interval censored. That is, even
when we observe an asymptomatic detection, we never observe T, precisely but we can only conclude that it happened
before the observed age at detection. Second, there is a selection of women who enter the study (and the sample), since
women who have already had a breast cancer diagnosis before entering the screening program are excluded from the
sample. Third, once a woman has entered the study, she is not typically followed until her death, but follow-up lasts
around 12 years when the trajectory is right censored. Therefore, we do not have any information about tumors with
onset, or that will be detected, later on.

Note the relationship of these latent quantities with the observed data: the mean of the ages at observed symp-
tomatic detection in the sample should be smaller than the expected value of Ts in the population, due to selection
into the set of the observed Ts ages; indeed, subjects with larger sojourn time A (eg, Ts) are less likely to have their Ts
value observed (since asymptomatic detection is more likely). Hence the distribution of the observed ages at detection,
asymptomatic or symptomatic, would clearly not represent a good estimate of the underlying disease history, and the
proportion of observed diagnoses out of the total may be very different from the probability of ever developing breast
cancer.

When defining a model, there are basically three decisions to make that characterize its structure. The first one is
the choice of the marginal distributions for T4 and A for the diseased subjects. Any distribution having support on
the non-negative real line may work, but even distributions on the real line could be appropriate under some specific
parameter combinations that make the negative tail negligible.

The second assumption concerns the dependence structure between T4 and A. While modeling them as independent
random variables may facilitate the form of the likelihood function and the estimation of the model parameters, such
assumption may be too simplistic and not reflect the link between these two quantities that has been documented in the
literature.'

Lastly, one should decide on how to include covariates (and which ones) in the model, both as modifiers of the joint
distribution of (T4, A) and of the probability p.

In principle, it is possible to compute the observed data likelihood, and obtain the maximum likelihood estimates for
the parameters. However, the calculation and maximization of the observed data likelihood can be complicated or not
feasible, especially when the number of parameters grows. Indeed, such observed data likelihood involves many (bivari-
ate) integrals which may not be solvable in closed form, but may need to be approximated numerically-thus introducing
numerical difficulties in the estimation process.

Indeed, as we have seen above, each screening examination provides some information about the value of
T4, which is necessarily interval censored. On the other hand, Ts is either observed precisely in the case of
symptomatic (outside-screening) detections, or we only have partial information on it. Integrating the joint prob-
ability density of (T4, Ts), denoted by fir, 1, (fs, L), on an appropriate subset of the domain as determined by the
observed events, provides the observed data likelihood contribution, which we denote by L;, for a generic i-th
subject.

Importantly, we condition on the observed mammography/ultrasound exams. Depending on the presence of a positive
or negative exam, diagnosis and/or right censoring, one can observe different types of data configurations: cases with
a symptomatic detection, cases with an asymptomatic detection and cases without an observed diagnosis. These three
kinds of configurations contribute to the observed data likelihood in different ways (Recall that we are assuming perfect
sensitivity and specificity of the examinations.).

For a subject with an observed symptomatic detection, T is fixed at the observed value #; and one should integrate the
joint density function over all possible values of T,4. The lower bound of the integral (1) is the last negative examination if
there is one, or the lower bound of the support otherwise. Note that, clearly, T4 < Ts with probability one (since A > 0).
Thus, the contribution of such configuration to the observed data likelihood is

Li=p- /fTA,Tslcase(u, ts)du.
1
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For a subject with an observed asymptomatic detection, T is greater than the last observed exam (denoted by d since
it coincides with the date of detection) and T, is necessarily between [, the last negative exam if there is one, and the
detection time d. This defines the integration region for this kind of trajectories:

oo

d
Li=p- / fTA,Tslcase(u’ v)dvdu.
1 d

Lastly, a subject who has not developed the disease (yet) may experience breast cancer after the last negative exam or the
end of follow-up (with probability p), or never experience it (with probability (1 — p)). In the first case, the likelihood con-
tribution L; is obtained by integrating the joint density of (T4, Ts)|case over all values of T, greater than the last negative
exam [ and over values of T greater than the age at the end of follow-up c. In the second case, the result of the analogous
integration is 1 since the conditional distribution of (T4, Ts)|non-case is concentrated on {T4 = +o0, Ts = +o0}. Since
these two events are disjoint, the total contribution to the likelihood is the sum of their probabilities:

o o0

Li=Q-p)+p- / / J1,.Tglcase (U, V)dvdu.
1 ¢

Lastly, all likelihood contributions should take into account the fact that only asymptomatic women can enter the
study, i.e.the distributions of the quantities of interest should all be conditional on the event {Ts > Age at entry}: each
likelihood contribution L; should be divided by the probability of the conditioning event

c; = P(Ts > Age at entry|Age at entry) = (1 — p) + p P(Ts > Age at entry|Case, Age at entry).

Note how this expression is also based on the assumptions that once T is reached, a symptomatic detection (and diagno-
sis) is immediately observed. While this is exactly not the case, we believe that it is most consistent with the study entry
requirement. Notably, the condition does not require that T4 > Age at entry.

The observed data likelihood is then given by the product of all the (independent) subjects’ contributions: L = []. L

=13 °
Even if not explicitly indicated in the notation above, L is clearly a function of all the model parameters. For numerical
maximization (and for estimate ion of the variance-covariance matrix of the MLES), it is more convenient to work with
the log-likelihood I = Y log(L;) — Y-, log(cy).
The degree of difficulty of calculating the two-dimensional integrals which form the observed data likelihood function
varies greatly according to the specific distributional assumptions. Only specific model formulations lead to analytical or
partially analytical solutions. In the following section we describe one such simple model.

3.1 | Model specification and results

We consider a simple model that assumes independence between T4 and A and does not include any covariates. In
particular, for the cases, we assume T4 ~ N(u, c?) angle ~ Exp(A), with A independent of T4, where u € R, 6 > 0
and 4 > 0. Easily, Ts = T4 + A has density fr,(f) = 4 e 5D (¢, 4 + Ao, o2), where B(-, u + 462, 62) is the cdf of a
N(u + Ac?,62). Also, the conditional density of Ts|T, is fryr, (V|u) = de~*""W], o (v). Note that, marginally, Ts follows
an exponentially modified Gaussian (emg) distribution with parameters (y, o, 4). The contributions to the observed data
likelihood are as follows (for the derivation please refer to the Supplementary Material).

Using the notation introduced earlier, we have: (i) for a subject with an observed symptomatic detection

s

O,y + Ac?,62)
P fri(ts) < D(t5, u + Ac?,062)

(ii) for a subject with an observed asymptomatic detection

i2o2

Li=p-ez " (0, u+ 16% 6% — O u + 4o?,6%));
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TABLE 3 MLEs and 95% confidence intervals for the model parameters.

Ty A Cure rate
Iz o A p
64.9 (64.5, 65.3) 22.3(17.6, 27.0) 1.62 (1.51,1.73) 0.179 (0.172, 0.186)

Note: Time is measured in years.

and (iii) for a subject without observed diagnosis

fry(e) — e*=Ofr ()
A

Li=(1—p)+p-< +1—(I)(C,M,O'2)>.

The probability of the conditioning event {Ts > Age at entry|Age at entry} is equal to

c=(0-p)+p- <1—¢>(f,u,62)+@>.

Table 3 shows the estimates obtained from the maximization of the observed data likelihood with respect to the
four model parameters (u,o, A, p). The likelihood maximization is performed using the R function maxLik.!® For
the maximization, we reparameterized all models in such a way that the resulting parameter space becomes the
whole R?, that is, with no constraints. In particular, we applied a logarithmic transformation to all parameters with
a positivity constraint, while for the parameter p, constrained to take values in the interval [0, 1], we used a logis-
tic reparametrization. Relying on invariance of maximum likelihood estimators one then obtains the estimates for the
original parameters. Application of the delta method (details not shown) allows one to then compute their standard
errors. As noted in the Discussion Section, estimation of the standard errors for such models (applied to very par-
tially observed data) requires care due to instability in the estimation of the Hessian matrix. We decided against adding
further details on this specific implementation of the delta method, as not to give too much importance to this first,
simple model.

The estimated latent proportion of women experiencing the disease in their lifetime is around 18% (recall that
our model does not impose any constraint on the upper bound of the subjects’ lifespan). One may compare such
rate to the estimated lifetime risk of breast cancer, that has been estimated as being one out of eight, or 12.5%.%°
As expected, although the observed proportion of diagnoses in the sample was around 4%, the model reconstructs
the frequency of many more lifetime diagnoses than those observed during the limited follow-up of the subjects
in the study.

The start of the asymptomatic detectability is on average close to the age of 65 years, ranging between 20
and 110 with 95% estimated frequency. The numbers 20 and 110 are the values taken by the two (consis-
tent) estimators for the percentiles 2.5% and 95% of the normal distribution of T4, where consistency clearly
follows from the continuous mapping theorem applied to the MLEs. Note that this is a wide interval; in
Section 4.3 we will see that including some covariates in the model will have the effect of reducing such marginal
variability of T4.

Somewhat surprisingly, the model suggests that the sojourn time A is quite short, lasting on average 7-8 months, with
an exponential tail. This result is different from current estimates from previous studies, which suggest a mean sojourn
time between 2 and 7 years.?! The exclusion of DCIS cases from our analysis is very likely a factor that contributes to
obtain shorter estimates for A.?! However, we believe that the main reason for such small estimate for the sojourn time
is possibly the lack of detailed information on the examination results and on the kind of detection from our data (see
our comment on this in Section 2). Indeed, we should also recall that T4 has been defined here starting from the dates of
the observed diagnoses, and that it is defined as the time when detectability starts. Thus a shorter sojourn time may be
compatible with an over-estimation of T,.

We now move to more flexible and informative models, which will require a different likelihood-free inferential
procedure.
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4 | MORE FLEXIBLE MODELS
4.1 | Approximate Bayesian computation

As we have pointed out, the calculation of the observed data likelihood for latent processes with large amounts of miss-
ing data can be challenging even for relatively simple models. In general, every small change to the model requires the
observed likelihood function to be constructed and implemented. For example, the inclusion of a dependence struc-
ture between T4 and A requires solving complicated integrals through numerical approximations that determine loss of
accuracy, as well as a significant increase in the difficulty by the optimization algorithms in identifying the maximum
likelihood estimates.

An estimation procedure that allowed one to quickly implement several different models would greatly increase
the flexibility in modeling. This is possible by implementing a likelihood-free approach, where the observed likelihood
function does not need to be calculated explicitly, nor maximized. A likelihood-free approach that seems particularly
promising for disease history models is approximate Bayesian computation (ABC).'

The first step of ABC consists of setting prior distributions for the model parameters. One then samples a parameter
vector from their prior distribution, and generates a dataset from the corresponding model. In the basic version of ABC, if
the simulated data are “close enough” to the real data, that parameter combination is retained and included in the sample
of parameter values that approximates the posterior distribution of the parameters given the data. Indeed, implementing
this procedure a very large number of times (here 200, 000) and selecting only a very small proportion (called tolerance
or retention rate) of samples, then allows one to approximate the parameters’ posterior distribution.

It is also common to post-process the ABC output to improve the selected posterior sample by applying a so-called
“regression adjustment.” The idea is to regress each parameter (or to perform a multivariate regression with all the param-
eters as response vector) on the set of summary statistics and to apply a correction based on the difference between
observed and simulated summaries.?>?3

Measuring the distance between two datasets (observed vs. model-generated) is not trivial: one should use informative
summary statistics of the data, which reduce the dimensionality of the data but still retain the information needed to
perform accurate inference on the parameters. Indeed, only by using sufficient statistics and by conditioning on the event
that their values are identical (and not just close) in the observed data and in the model generated data, one would ensure
that the sample of retained parameter values represents a sample from their exact posterior distribution.?® More recently,
various approaches for efficiently comparing observed and generated data without defining summary statistics have been
explored.?*

There is a vast literature on the choice of summary statistics in ABC, and a variety of approaches have been proposed.?
Most of the methods, however, do not propose any constructive procedure, but only suggest techniques to select a sub-
set of summary statistics among a bigger set of proposals (subset selection methods) or to combine them to reduce the
dimensionality (projection methods).

In our models we include the three binary covariates described in Section 2, which partition the subjects into eight
groups, and consider a set of the same summary statistics computed on each of the eight groups. In particular, we build
“Metric 1” to measure the dissimilarity between the observed and a model-generated dataset, based on a total of 32
summary statistics (4 for each of the eight groups of women): proportion of observed detections, proportion of observed
symptomatic detections among the total number of observed detections, median age at observed asymptomatic detec-
tion, and median age at observed symptomatic detection. The distance between the two datasets is then defined as the
L2-distance between the standardized summary statistics of the two datasets. The standardization is performed by dividing
each summary statistic by a robust estimate of its standard deviation (the median absolute deviation).

“Metric 2” refines “Metric 1” by also considering the entire distribution of the observed age at detection. This metric
makes use of the classical test statistic for the comparison of two proportions and of the Kolmogorov-Smirnov test statistic
to assess if two observed samples can be considered to be generated by the same underlying distribution. We perform the
first 16 tests to compare the proportions of observed detections and of observed symptomatic detections in each of the eight
covariate groups. Then, we perform 16 additional tests to compare the distributions of the age at asymptomatic and symp-
tomatic detection, again for each group. We believe that the test statistics, or the corresponding p-values, could provide
a good measure of the distance between two objects (two proportions or two distributions, depending on the test). There
are many ways to combine the test outputs (test statistics or p-values) into a distance function between the two datasets.
In the Supplemental Material we briefly explore the relative performance of “Metric 1” and a version of “Metric 2” on two
simulated datasets, and “Metric 1” seems to produce estimates of the parameter values which are closer to the true values.
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Hence, in Section 4.3 we present the results obtained by using “Metric 1”7, while fitting different models to the
motivating data. The retention (tolerance) rate is chosen through a leave-one-out cross-validation procedure, which is
implemented and available in the R package abc.?® We make use of local linear regression to correct the posterior samples
by regression adjustment.

In the simulation process, we generate the screening examinations with the same planned schedule of the real screen-
ing program, and assuming a constant adherence rate of 0.6 to the prescribed examinations.?’” Hence, the screening
parameters are fixed, and not object of inference. For the subjects belonging to the susceptible proportion, the disease his-
tory is then superimposed to the performed examinations to produce the observed age at detection (if it happens inside
the interval of follow-up), the detection mode (symptomatic or asymptomatic), and the age at last negative examination.
For the non-cases, we identify the age at their last negative examination, if there is one, before the end of the follow-up.
We thus obtain a dataset containing information that has structure similar to that of the observed data.

To make the simulated data as comparable as possible to the observed ones, we keep approximately the same distri-
bution for the covariates. The approximation comes from the fact that one needs to generate a slightly larger sample of
women because some of them will experience a symptomatic detection of the disease before the age at entry in the study,
and therefore will be excluded from the effective sample. Through some simulations, we estimated this proportion to be
roughly 4% of women, so for each simulated sample we generated 78,051/0.96 =~ 81,305 women. We assign the 78,051
observed covariate vectors to the first 78,051 women in the simulated sample, and take a random sample of the covariate
vectors for the remaining 81,305 — 78,051 = 3254 women.

Note that the ABC procedure described above, known as ABC-rejection algorithm, is very computationally demanding
since only a small fraction of the generated samples are retained and contribute to the posterior distribution approxi-
mation. There exist many refinements of the ABC algorithm, aimed at reducing the inefficiency due to sampling from
very uninformative prior distributions by exploiting the information of already accepted parameter values.?® These
refined algorithms could bring a substantial computational gain, but have the main drawback of not being easy paral-
lelizable on multiple cores. Having the possibility to work on a server with many processors, we decided to implement
the simpler ABC-rejection procedure (For the implementation of all models we used the software R?° on a server with
176 cores.).

4.2 | Models

Recall the three binary covariates described in Section 2: X; =“at least one birth,” X, =“high level of education,” and
X; =“family history of cancer,” all coded as 0 = no and 1 = yes. We posit models such that the susceptible proportion
depends on the observed covariates x = (x;,x;, X3) through the logit link:

ePotP1X1HPyX;+P3X3

p(x) = 1 + ePotP1X1+PXp+psXs ©

For the cases (those who will eventually develop the disease) subjects, the evolution of the disease is described by the time
to its asymptomatic detectability T4 and by its sojourn time A. We let the mean of T4 depend on the covariates linearly,
while the variance of T, is assumed constant across covariate groups.

The distribution of A is then defined conditionally on the observed value of Ty, and it may reflect the effect of the
covariates but only indirectly (see below). Note that any form of dependence between T4 and A is easily manageable
through ABC, since the simulated value of T4 is already available when one generates the value of A from the distribution
of Al TA.

We have exploited the flexibility of ABC by exploring several different models. We do not report all details, such as
the prior distributions, for all of them here. Parameters associated with covariates had uninformative prior distributions
centered at zero. The prior distribution for the mean of T, in the baseline group, denoted with fy, was chosen to be
N(65, 10): indeed, from the literature and from the simple model in Section 3.1 (see MLEs in Table 3), we expect a mean
of 65 to be reasonable® but we still keep a variance large enough to let the data bring in relevant information on f,.
Similarly, po represents the proportion of women who will develop the disease in the baseline group and we assign to it a
rather informative prior: py ~ logit (Beta(3, 21)) around the lifetime risk of 1 in eight that has been repeatedly suggested
as a possible consensus value in the literature.3! Indeed, the prior distribution corresponds to a woman in the baseline
group has on average a probability of 3/(3 + 21) = 0.125 of belonging to the diseased (non-cured) group.
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Here below is the list of ten models. The number of parameters to be estimated, indicated below between square
brackets, is always equal to 4, for the cured proportion regression, plus 7 or 8 for the disease history.

1. Normal + Exponential [4 + 7 = 11 parameters]

Ta | Bos.s B30 ~ N(Bo + Prx1 + Boxa + faxs, 0°);
A {Ta=ta},y0.71 ~ Exp(eo*n's).

2. Normal + Exponential (log-scale) [4 + 7 = 11 parameters]

I

2 s
, 0 =log ﬁ+1 ;

A = log(Ts) = 10g(Ta) | {Ta = ta},v0.11 ~ Exp(e’o*iis),

5 -
Ta | Bos -, B3, 0 ~ logN </4 = m<S_2 + 1>
m

where m = E(T,) = fo + f1x1 + Poxz + Paxs and s> = Var(T,). This parameterization is used to let the variance of T4
(in the original scale) be independent of covariates, that is, the same across groups.
3. Bivariate normal [4 + 8 = 12 parameters]

(T4, D)| Po, -, B3, Ha, 01,02, p ~ Na(p, X),

O'% pPO1072
where u = (fo + p1x1 + foxa + X3, pa) and T = 2

pPO1072 0'2
4. Bivariate normal (log-scale) [4 + 8 = 12 parameters]

Let A = log(Ts) — log(T,). We assume

(log(TA)s A) | ﬂOs cees ﬁ39 HA,01,02,p ~ N2(M’ 2)9

log(rsn—22+1> plog(i—i+1)§az

-

where y = <m<:1—22+1>_5, ;4A> and ¥ = \
plog(li—zz+1>20'2 crg
As in all the previous models, again here m = E(T4) = fo + f1x1 + f2x2 + f3x3 depends on the covariates, while
s2 = Var(T4) does not.
5. Gamma + Weibull [4 + 8 = 12 parameters]

2
Ta | fos.os P36 ~ Gamma((y(x)) @)

2 9’
o2 o2

A | {TA = tA}’ Yo, 715 k ~ Welbuu (A(tA)3 k) 5

where E(T4) = fo + pi1x1 + frxz + f3x3 and A(ty) = e"t'a and k has a prior distribution that includes one (corre-
sponding to the exponential case).
6. Gamma + piecewise exponential [4 + 8 = 12 parameters]

()2 u(x) >

s

2 ’0-2

Ta | Bos-es P30 ~ Gamma(
O

A|{Ta =ta}, A1, A2, 43 ~ Exp(A1 - 1(ta < 55) + A2 - 1(55 < tg £ 65) + A3 - 1(ta > 65)),

where E(T4) = u(x) = fo + brx1 + B2x2 + fax.
7. Rescaled Beta + Exp [4 + 7 = 11 parameters]

TA | ﬁ07 (X3} ﬁ.’no- ~ 100 - Beta(a7 ﬂ)’

A|{Ta=ta},y0,11 ~ Exp(eot's),

=100 - = 2= b ___
where E(T4) = 100 - — 5= Bo + P1x1 + Poxa + f3x; and 6 = @+p) P (atfiD)”
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8. Rescaled Beta + Weibull [4 + 8 = 12 parameters]

TA | ﬂO? eeey ﬂS’ o ~ 100 * Beta(a’ ﬂ)7
A | {TA = tA }’ Yo, 71 k ~ Welbull (/1([.4)9 k) 5
— R 2___ ef
where E(T4) = 100 arp = Pot Bixa+ Boxz + B33, 07 = o s
and A(t4) = efothla, Here, too, k has a prior distributions that includes one.
9. Rescaled Beta + piecewise exponential [4 + 8 = 12 parameters]

TA | ﬁO& cees ﬁ3,0' ~ 100 - Beta(a9 ﬁ)9
A {Ta =14}, A1, A2, A3 ~ EXp(A1 - 1(t4 £ 55) + Ay - 1(55 < t4 < 65) + A3 - 1(f4 > 65)),

= R 2-1002. —
where E(T4) =100 - == = fo + i1 + foX2 + fi3x3, 07 = 1007 - == "

10. Normal + piecewise exponential [4 + 8 = 12 parameters]

Ta | Pos-r P30 ~ N(fo + prX1 + faXa + faX3, 62);
A | {Tqg=ta}, A1, A2, 43 ~ EXp(ﬂl < 1(ta <55)+ A, - 1(55 <ty £ 65)+ A3 - 1(t4 > 65)).

Note that both the normal and the gamma distributions have decreasing densities for older ages (with the gamma
density decreasing more slowly, in addition to not imposing symmetry and not allowing for negative values). Note also
that very limited data are available for older ages, due to right censoring which also includes death. One may expect the
three models based on the rescaled beta density to provide a more realistic shape for the right tail of T4.

In the next section we discuss the results of the ABC-based model selection procedure to choose among these models.

4.3 | Model selection and results

To select the best model among the ones described above, we simulate 200,000 samples from each model.'>*? The met-
ric used to quantify the distance between each simulated sample and the observed one is “Metric 1”7, based, for each
covariate-defined stratum, on the proportion of observed detections and of observed symptomatic detections, and on
the median age at observed asymptomatic and symptomatic detection (see also Section 4.1). Then, from the pooled set
of samples produced by all the models, we select the samples that have the smallest distance from the observed data,
keeping track of which model generated each sample. The resulting sample of parameter values and model index can be
regarded as a sample from the approximate joint posterior distribution of the parameter and the model index. The num-
ber of retained samples generated by a specific model, divided by the total number of retained samples, thus represents
an approximation of the posterior probability of that model. For a more detailed description of this procedure.3?

Since the initial number of samples (200,000) was the same for each model, we are assuming a uniform prior distri-
bution over the ten models. Table 4 contains the numerical values of the approximate posterior probabilities. Model 10,
Model 6 and Model 9 clearly show the highest (by far) posterior probabilities (0.225, 0.214, and 0.202).

The ABC model choice procedure described above presents some potential pitfalls.>® Indeed, as it has been high-
lighted by Marin et al,> in many cases it may even fail to converge to a Dirac distribution on the true model as
the size of the observed dataset grows to infinity. In other words, the so-called “curse of insufficiency”? is likely to
occur, thus leading to arbitrariness in the construction of the Bayes factor (and thus of the posterior probabilities of
the models).

TABLE 4 Posterior probabilities of the ten models (global retention rate = 0.005).
Model 1 2 3 4 5 6 7 8 9 10

Posterior probability 0.073 0.076 0.024 0.009 0.052 0.214 0.064 0.061 0.202 0.225
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TABLE 5 Counts of votes for the ten models out of a total of 1000 trees composing the random forest.
Model 1 2 3 4 5 6 7 8 9 10
Votes 64 92 8 8 52 182 70 84 252 188

Given these concerns, some alternative techniques to conduct model choice in the context of ABC have been pro-
posed, and we also implement an alternative approach based on random forests.>* For an introduction to random forests,
which are a machine learning tool consisting of the aggregation of simple classifiers (called trees) that can be used both
for classification and regression purposes, we refer to chapter 15 of the book by Hastie et al.>> Model selection through
ABC is reformulated as a classification problem, and it is split into two steps.3* The first step trains a random forest that
predicts, for each possible value of the summary statistics, the model that best fits the data. In other words, the random
forest is a classifier that associates to each vector of summary statistics a predicted model among the ten proposed. The
training set is represented by the pooled set of simulations performed for the ten models. Once the classifier is trained,
the predicted model for the set of observed summary statistics represents the selected model, that is, the model that
obtained the majority of votes among the classification trees of the random forest. Table 5 shows that, given a trained
random forest made of 1000 trees, Model 9 obtained the majority of votes (252) and it is, therefore, the model selected
for having the best fit to the observed data.

In the second step®*, the posterior probability of the selected model is computed through a secondary random for-
est. The binary model prediction errors (Model 9 vs. all the other models) are computed for each observation using the
out-of-bag classifiers (see here Reference 35 for the description of out-of-bag classifier in a random forest). This secondary
random forest, which is again trained on the pooled set of simulations performed for the ten models, performs a regression
of the prediction error on the summary statistics. Lastly, the posterior probability of the selected model is computed as
the random forest regression estimate associated to the vector of observed summary statistics. In our case, this procedure
resulted in a posterior probability for Model 9 equal to 0.247.

The results from this alternative procedure for model selection disagree slightly with those from the simpler algorithm
described at the beginning of this section. However, the two approaches agree on the best three models being Model 9,
Model 10, and Model 6.

An assessment on the overall performance of model selection in ABC is difficult since, among other issues: (i) it is
based on one very specific model; (ii) it depends on the specific summary measure that one implements; (iii) it depends
on the collection of alternative models that one considers. Given the motivation provided in the literature to consider the
approach based on random forests more reliable,*? and the additional simulation study that we performed to assess its
ability to discriminate among our proposed models (see Section S3 of the Supplementary Material), we now focus on the
results of the ABC estimation procedure for Model 9, the “Rescaled Beta + piecewise Exponential” model.

We assumed the following independent prior distributions for the model parameters: fy ~ N(0.65,0.05), f; ~
N(0,0.25), fori = 1,2, 3, 0 ~ Unif(0.02,0.25), 4; ~ Unif(0.1,4), for i = 1, 2, 3, pp ~ logit (Beta(3, 21)), p; ~ Unif(-2, 2), for
i=1,23.

A retention (or tolerance) rate of 0.02 was chosen via a leave-one-out cross-validation procedure, by comparing
the quality of several posterior estimates obtained using different tolerance rates. The posterior distributions shown
in Figure 2 are thus based on a sample of 200, 000 X 0.02 = 4000 selected parameter values. Following a comment by
a reviewer, the results reported in the rest of this Section have been slightly refined by applying the post-processing
regression adjustment to the transformed parameters to ensure that all posterior values fall within the support of the
corresponding prior distributions.

We note that the posterior distributions of the model parameters are much more concentrated than the prior distribu-
tions. The only exception is parameter 4;, whose posterior distribution is still quite flat. This lack of posterior information
is probably due to the small number of cases observed among women younger than 55 years old. Table 6 shows the pos-
terior modes and the 95% intervals corresponding to the regions of the approximate posterior distributions that have the
highest density (HPD intervals).

Some interesting observations on the effect of the covariates arise from the estimated posterior distributions: (i) women
with at least one child tend to have a lower probability of ever experiencing breast cancer, and a later T, if they do (posterior
distributions for p; and f); (ii) having a family history of cancer has the opposite effects, according to the posterior
distributions for p3 and gs; (iii) women with a high level of education experience breast cancer earlier than women with a
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FIGURE 2 Prior (red dashed line) and local linear regression adjusted approximate posterior (blue histogram and solid line) densities
for each parameter of the “Rescaled Beta + piecewise exponential” model.

TABLE 6 Posterior modes and the 95% highest posterior density (HPD) intervals.

Parameter bo i i b3 o A

Mode 0.708 0.027 —0.086 -0.028 0.097 0.877

HPDI (0.586, 0.7490) (=0.039, 0.089) (—0.153, —0.024) (—0.088, 0.036) (0.030, 0.219) (0.291, 3.783)
Parameter Az A3 Do D1 ) 23 Ps

Mode 2.023 3.334 -1.661 —-0.298 —0.044 0.172

HPDI (1.240, 3.578) (2.583, 3.998) (—2.339, —1.064) (~1.327,0.173) (—0.798, 0.556) (=0.507, 0.851)

lower education level, but this variable is probably not very relevant in modifying the susceptible proportion p (posterior
for p, almost symmetric around 0).

To gain a clearer idea on how covariates influence the mean of T4, which is defined as u(x) = fo + f1x1 + fox2 + fax3,
we may combine the posterior distributions of f, f1, > and f; according to the covariate combination of each group (see
Table 7). The resulting boxplots are shown in the left panel of Figure 3. We can see that covariates do indeed play an
important role in determining E(T4), whose estimated posterior median ranges from a minimum of 58 to a maximum of
72 years old.
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TABLE 7 X;=Atleastone birth (0:No, 1:Yes); X,= Education level (0:Low/Medium, 1:High); X;= Family history of cancer (0:No, 1:Yes).
Group X; X, X3
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1
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FIGURE 3 Approximate posterior distribution of the mean age at asymptomatic detectability u(x) and of the susceptible proportion
p(x) across covariate groups.

Similarly, combining the posterior distributions of po, p1, p» and ps, we can compute the posterior distribution of the
susceptible proportion p(x) in the eight covariate groups. As we can see in right panel of Figure 3, the probability for
a woman of developing breast cancer varies across groups. In particular, its median ranges from a minimum of about
10%-11% for women in groups 5 and 7 (having at least one birth and with no family history of cancer) to a maximum of
about 17%-18% for women in groups 2 and 4 (without any birth and with family history of cancer).

Once an approximation of the posterior distribution of the parameters is available, it is also possible to compute
approximate predictive distributions for T4 in each covariate group, as well as for A given the observed value of T4. Given
a specific covariate configuration, we have a joint posterior sample for the mean and for the standard deviation of T4,
{(ui,01), i=1, ... ,4000}. For each couple (y;, 5;), we then draw a value of ti‘ from the model, that is, we generate

. ind
£ | i, 01~ 100 - Beta (u;, o), for i =1, ... ,4000,

where Beta(u;, o;) denotes a Beta random variable having mean p; and variance Giz' The set of generated values
{t,, i=1, ...,4000} then represents a sample from the ABC approximation of the predictive distribution of T, in that
group.3¢

We can repeat this procedure for each covariate group, obtaining the eight distributions shown by the boxplots in the
left-hand side of Figure 4.
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FIGURE 4 Predictive distributions for T, in each covariate group and for A given the observed value of T4.

Similarly, the posterior sample of size 4000 for 4;, A,, and A3 can be used to generate a sample from the approximate
predictive distribution of A given T4 (see the right-hand side of Figure 4), by using:

SL{Ty < 55}, 4 “ Exp(Al), for i=1, ...,4000;
811{55 < T4 < 65}, AL % Bxp(Al), for i=1, ...,4000;

8L1{T4 > 65}, AL ™ Exp(Al), for i=1, ... ,4000.

Note that these results suggest that A (slightly) decreases when T, increases, which seems to be in contrast with the
medical literature.'®

Clearly, the predictive distributions of T4 and A cannot be directly compared to the observed data. In the Supplemen-
tary Material (Section S9) we provide an example where, under simplified assumptions, one can compute the distributions
of the observed age at asymptomatic and symptomatic detection analytically. One way to explore the goodness of fit of
these models would be to generate data from them and to compare such data to the observed data through some sum-
maries. However, this is exactly how ABC has produced the estimated model parameters, so that the algorithm is indeed
already based on a goodness-of-fit maximizing procedure (see also Section 4.4). As an additional validation of the esti-
mated model, we have performed goodness-of-fit for Model 9 in a cross-validation fashion. We partitioned the data into
five folds and each time used four of them to estimate the posterior distributions which are then used to generate a sam-
ple with the same covariate distribution as in the left-out fold. The resulting summaries, reported in Table 8, show rather
small discrepancies between the observed and the simulated data. Thus, the estimated model provides a reasonable fit to
the data in terms of the observed summaries.

Relatedly, in the next section we analyze the effect of different screening policies (in terms of observed detections)
given the estimated latent disease process.

4.4 | Comparing alternative screening strategies

After estimating the parameters of the models, one can use this information to compare different screening strategies to
help identify an optimal screening strategy.

In particular, we now compare several screening strategies, which differ with respect to the gap between consecutive
examinations, the proportion of attended examinations out of the total number of invitations (adherence), and the screen-
ing age range. In particular, we start from the screening strategy offered in Lombardy (denoted by “Screening strategy 1”)
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TABLE 8 Summaries obtained from the five-fold cross-validation in the observed and generated data.
% Symp Median age Median age
% Dx Dx Asymp Dx Symp Dx
Observed in the left-out fold
0.0381 0.7882 64.8638 68.7885
0.0400 0.8173 66.8350 68.1780
0.0420 0.7939 64.6242 67.9890
0.0359 0.8128 63.2334 66.0643
0.0384 0.8464 65.0609 67.1622
0.0389 0.8117 64.9235 67.6364
Simulated from posterior model
0.0300 0.8522 64.1530 68.8799
0.0349 0.8108 64.9741 68.6950
0.0318 0.8245 65.2285 67.4301
0.0329 0.8538 62.8602 67.6026
0.0309 0.8375 63.3131 67.8522
0.0321 0.8358 64.1058 68.0920

Note: The bottom line of each table shows the average of the results from the five folds.

TABLE 9 Observed summary statistics on a sample of size 100,000 generated from the estimated “Rescaled beta + piecewise
exponential” model under several different screening strategies.

Screening % Median age Median age Median
Strategy % Dx Asymp Dx Asymp Dx Symp Dx Lead time
(50-69, 2 years, 60%) 5.45% 15.4% 59.99 62.65 0.370
(50-69, 2 years, 80%) 5.61% 19.2% 59.92 62.39 0.362
(50-74, 2 years, 60%) 7.25% 14.0% 62.33 65.38 0.342
(50-74, 2 years, 80%) 7.37% 18.0% 62.18 65.25 0.326
(50-74, 1 years, 60%) 7.36% 24.7% 62.27 65.50 0.321
(50-74, 1 years, 80%) 7.42% 30.9% 62.62 65.62 0.328

Note: The screening strategies are defined by the screening age range, the gap between subsequent exams, and the overall adherence proportion.

and we measure the effect of varying some of its features on the total number of observed detections during the screening
age interval, the percentage of asymptomatic detections, and the median age at observed asymptomatic and symptomatic
detection. The underlying assumption (as supported by many studies?), is that the moment when a tumor is detected
could make a difference on the outcome of the disease. Indeed, detecting the disease earlier rather than when symptoms
would have emerged, that is, at a less advanced stage, should allow one to treat it with more success.

The six screening strategies that we have considered are shown in Table 9. All the screening strategies are implemented
on a sample of size 100,000 generated from the estimated predictive distributions for the “Rescaled Beta + piecewise
Exponential” model. In the simulated samples we assume an administrative follow-up interval that coincides with the
screening interval (ie, 50-69 or 50-74 depending on the policy), except for a small proportion of about 5% of the subjects,
for whom censoring for other causes occurs earlier.

As expected, reducing the gap between consecutive screening examinations from two years to one year results in an
increase in the percentage of asymptomatic detections out of all detections by 72%-76% (from 14.0% to 24.7% or from
18.0% to 30.9%), depending on adherence. Clearly, such an increase would come with a substantial increase in the cost
of the program.

85U8017 SUOWILLID BAFe81D) 8|qedlidde au Aq peusenob ke ssjoiie VO ‘SN o S8|ni 10} AriqIT8UIIUO AB]IM UO (SUORIPUOD-PUR-SWB)/W0D A8 |IMAeIq 1 pulUO//SdNY) SUORIPUOD Pue SWiB | 84} 88S *[£202/90/20] U ARiq1T8ul|uO AB|IM ‘!felBUeIyo0D Aq 9526 WIS/Z00T OT/I0P/W00" A 1M Afeiq 1 jBul|uo//Sdny Woi} papeo|umoq ‘0 ‘8520260T



18 Wl LEY_Statistics BONDI ET AL.

Another possibility to increase the percentage of tumors diagnosed before becoming symptomatic would be to increase
the adherence to the screening program. From our results we estimate that increasing it from the current level of about 60%
to an adherence of 80% would make the proportion of asymptomatic detections increase by 25%-29%. Thus, even without
modifying the screening strategy, it seems crucial to find ways to raise the awareness on the importance of breast cancer
screening. As adherence likely depends on subjects’ covariates and is not constant over time, campaigns to encourage
women to attend the screening examinations regularly should target categories of women who tend to adhere less.?’

Interestingly, intensifying the screening examinations (either by reducing the gap or by increasing the adherence)
does not seem to imply a relevant difference on the age at observed asymptomatic and symptomatic detections, but only
on the total number of observed diagnoses.

Another observation concerns the effect of extending the end of the screening interval from the age of 69 to the age
of 74 years old (this change has been recently implemented in the Lombardy screening program). The total number of
tumors detected during the screening period (which is longer) increases by 30%. However, the proportion of asymptomatic
detections slightly decreases by 4%-6%. We can explain this result by recalling that tumors at older ages are (slightly)
faster in becoming symptomatic according to our model, so screening in the age range 69-74 is less “efficient” (produces
slightly fewer asymptomatic detections) than screening at younger ages.

We should also point out that, despite the small values of the (latent) quantity A predicted by our model, the difference
between the median age at observed asymptomatic and symptomatic detections is around 3 years, similar to the gap
observed in the motivating data. Such observed difference seems to be due to the fact that women over 69 (or 74 with
the new screening policy) are not screened, and therefore detections that occur after that age can only be symptomatic,
making the median age at observed symptomatic detection increase.

This also shows, once again, that the data filtered by the partial observation mechanism do not give a clear picture of
the underlying latent disease process in absence of a proper inferential model. Indeed, for more details on the results see
Table 9.

5 | DISCUSSION

We have analysed several parametric models to describe the natural history of breast cancer, where the main events of
interest are the start of asymptomatic detectability of the disease and the time of symptomatic detection (T4 and Ts).
The models differ in their parametric assumptions, but they all share a cure rate structure that takes into account that a
fraction of the women will never experience the disease. Estimating how long tumors stay in the latent phase between
time T4 and time Tg (ie, estimating the sojourn time A) is of great importance for planning an efficient screening policy.

We have obtained the distribution of these random quantities by estimating the model parameters from data collected
as part of the motivating study. While the results seem to provide useful information, they should be handled with some
care given the described lack of some information (and thus their reconstruction) in the available data. At the same time,
the exclusion of DCIS cases (not available in the data) from our analysis makes the comparison with other previous studies
which include them not immediate.

Depending on the complexity of each model, we have employed a likelihood-based or a likelihood-free estimation pro-
cedure. Given the complex missing data structure, it has shown to be very challenging and in most cases not feasible to
obtain maximum likelihood estimates for the model parameters. The calculation and the maximization of the observed
data likelihood rely on numerical algorithms, and even for relatively simple models they have been found to be computa-
tionally unstable. The numerical approximation of the Hessian matrix used to obtain standard errors for the parameters
has also been found to be difficult to compute.

On the other hand, approximate Bayesian computation (ABC) allowed us to perform both model selection and param-
eter estimation without the need to maximize nor calculate explicitly the observed data likelihood function. However, we
recall that inference based on ABC is subject to several levels of approximation: (i) the metric chosen to assess the dis-
similarity between generated and observed data; (ii) the tolerance for acceptance of a generated parameter value; (iii) the
use of Monte Carlo to estimate the posterior distributions; and (iv) the use of post-processing adjustments.!

We experimented with two different metrics to evaluate the distance between simulated and observed data and, based
on some simulations, we chose one of them. One could try to refine the way of calculating the distance between the
two datasets by using different statistics to measure the difference between the distributions of the ages at observed
diagnosis. An alternative approach to quantify the distance between the datasets may be to consider the accuracy of a
classification method implemented to distinguish between observed and simulated data.3® Lastly, while this is not a major
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concern in our application, the standard regression adjustment may produce samples from the approximate posterior
distribution of the parameters also beyond the support of their prior distributions. Extensions of the regression adjust-
ment approach through reparametrization may be explored to provide a more refined output.!> Similarly, modified kernel
density estimates can also be used to bound the density estimates used for visualization.

The results from the model in Section 3 and the model selected in Section 4 are not directly comparable, since the
MLESs obtained in Section 3 refer to a model that does not include covariates. However, Table 3 shows that the MLEs
reflect an average across groups of the estimates found from the model with covariates, and a general agreement between
the two models can be appreciated. In the Supplemental Material we further compare the results from the two models.

Also, note that the time when asymptomatic detectability starts (T,4) depends on the accuracy of the technology used
to perform the examination that, therefore, should be the same for all the visits included in the estimation procedure.
An improvement in the examination technique could make T4 move backwards, and the length of the asymptomatic
detectability interval increase.

The theoretical distribution of the observed age at asymptomatic and symptomatic detection can be computed ana-
lytically from a theoretical model, after superimposing the screening examinations. In the Supplementary Material we
obtain the analytical form of the distributions of the observed age at detection, both symptomatic and asymptomatic, for
one such simple model. The resulting expressions are rather complicated, and in most cases simulations are probably
a more suitable tool to study the effect of the selection process on the observed detections under complex models and
screening strategies.

Summing up, in this work we have highlighted that latent (realistic) models for disease histories are challenging to
develop and implement, but that ABC is a very flexible and conceptually simple tool, that looks especially suitable in this
setting where it is relatively easy to generate data even from rather complex models and filter them through non-trivial
observation processes.

We should point out that goodness-of-fit of the models here is evaluated conditionally on the choice of the prior
distributions for the parameters of each model. Therefore, it is possible that a model is penalized by a poor choice of the
prior or, on the contrary, that a model performs well thanks to a good prior choice. In particular, a change in the prior
distributions may lead to a different result in ABC model choice. Note that model selection between two non-nested
parametric models could also be performed by using Vuong’s test.>* However, Vuong’s test is based on the ratio of the
likelihood functions under the two models, and as a consequence also requires that one be able to compute them.

Our models have assumed perfect screening sensitivity and specificity. However, they can be extended to estimate
them from the data, and to take into account the dependence between the subject-specific adherence pattern and the latent
disease process. These extensions could not be implemented fully on the motivating data, given that detailed information
about screening invitations and examinations results was not available to us. However, we have conducted a small exper-
iment in this direction. We have extended the selected model by introducing an additional parameter for the sensitivity
of the screening examinations. The ABC estimation procedure did not work too well: despite using quite an informative
prior for the new parameter (Beta with mean equal to 5/6), stability issues in the estimation of the susceptible propor-
tions emerged, and this could be due to the choice of the distance (the summary statistics) or to the lack of sufficient
information in the data. Indeed, while in general sensitivity may be identifiable, this experiment suggests that the choice
of the metric to be used in ABC may make the identifiability of some parameters more difficult. As an additional sensi-
tivity analysis, we have inserted in the data generation process a hard coded value of sensitivity of 0.9, and that did not
seem to change the posterior distributions of the other parameters of the model.

Access to data with longer follow-up could allow one to study the effect of screening and treatments on survival. In
general, it will be of great interest to apply the models that we have developed to other, similar datasets to confirm the
information on the latent process that emerged here.

Clearly, changing the way in which event times are observed, for example by changing the screening schedule, cannot
impact the latent process. One way to check whether these models describe the latent process well would therefore be to
also use data collected under different screening policies. For example, we know that the Covid-19 pandemic is causing a
drop in screening adherence. Therefore, it will be important to apply these models to data collected by screening programs
during, and after this period.

In this work we did not mention overdiagnosis due to mammography screening, that is the detection of a breast cancer
that would not be detected during the woman’s lifetime in the absence of screening. In other words, an overdiagnosed
cancer would have never become symptomatic, because of its very slow evolution, and would have never led to death.
Many authors discussed this issue and proposed several methods to quantify the risk of overdiagnosis.***?> However, given
that we have data on invasive cases only, overdiagnosis is probably less of a concern in our data.!> A possibility to extend
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our models to address such question could be to implement a cure rate structure on A for the in-screening detected cases
or, equivalently, to assign a positive probability to the event { T4 < +o0, Ts = +o0}. Identifiability and estimability for such
extended models, both in general and for even large sample sizes, are open questions that will need to be addressed.
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