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ABSTRACT
Objectives  The emergency department (ED) is one of 
the most critical areas in any hospital. Recently, many 
countries have seen a rise in the number of ED visits, with 
an increase in length of stay and a detrimental effect on 
quality of care. Being able to forecast future demands 
would be a valuable support for hospitals to prevent high 
demand, particularly in a system with limited resources 
where use of ED services for non-urgent visits is an 
important issue.
Design  Time-series cohort study.
Setting  We collected all ED visits between January 2014 
and December 2019 in the five larger hospitals in Milan. 
To predict daily volumes, we used a regression model 
with autoregressive integrated moving average errors. 
Predictors included were day of the week and year-round 
seasonality, meteorological and environmental variables, 
information on influenza epidemics and festivities. 
Accuracy of prediction was evaluated with the mean 
absolute percentage error (MAPE).
Primary outcome measures  Daily all-cause EDs visits.
Results  In the study period, we observed 2 223 479 
visits. ED visits were most likely to occur on weekends for 
children and on Mondays for adults and seniors. Results 
confirmed the role of meteorological and environmental 
variables and the presence of day of the week and year-
round seasonality effects. We found high correlation 
between observed and predicted values with a MAPE 
globally smaller than 8.1%.
Conclusions  Results were used to establish an ED 
warning system based on past observations and indicators 
of high demand. This is important in any health system 
that regularly faces scarcity of resources, and it is crucial 
in a system where use of ED services for non-urgent visits 
is still high.

INTRODUCTION
The emergency department (ED) is the 
gateway (an open door) and the most crit-
ical area of a hospital, moving many activities 
and causing problems in the management 
of elective procedures when the number of 
patients who come knocking increases. In 
the last decade, many countries have seen a 

substantial rise in the number of ED visits, with 
an increase in length of stay1 and associated 
detrimental effects on quality of care. ED visits 
are unavoidably subject to fluctuation, and 
several models to predict high demand have 
been developed in the last decade, aiming at 
effectively managing hospital beds and staff 
rosters.2 In Italy, even though the number of 
ED visits has been decreasing since 2016, the 
mean waiting time in EDs was high, between 
12 hours and 24 hours in 3.5% of cases in 
2017, and over 24 hours in 2.1% of cases.3 The 
definition of overcrowding4 in the ED litera-
ture is not consistent, nor are the measures 
used to assess overcrowding, which vary from 
clinician perception of overcrowding to input 
measures (eg, waiting times and number of 
patients that arrived), throughput measures 
(eg, ED capacities and patient care time), 
output measures (eg, percentages of hospital 
admissions and hospital beds) or multidi-
mensional indices such as the Emergency 
Department Work Index. This variety of 
measures corresponds to the different type 

Strengths and limitations of this study

	► This study is one of the few studies linking temporal 
periodicity, occurrence of festivities, local weather 
conditions and pollution to emergency department 
(ED) visits.

	► We estimated an autoregressive integrated moving 
average model for each hospital, thus taking into 
consideration each specific characteristic and incor-
porating weekly and annual seasonality with Fourier 
terms.

	► Results were used to establish an ED warning sys-
tem based on past observations and indicators of 
high demand.

	► We cannot exclude the possible presence of unmea-
sured variables that may better predict ED visits and 
overcrowding.
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of factors studied as causes of ED crowding. We concen-
trate here on predicting the number of visits from input 
factors, that is, determinants and modalities of patient 
inflow, such as non-urgent visits and influenza season. 
In this case, it is better to speak of overflow.5 We did not 
investigate throughput factors, describing organisational 
issues in the ED, such as inadequate staffing, nor output 
factors. The latter includes one of the major reasons for 
ED overcrowding, which is the shortage of acute care bed 
capacity.6–10 Among the most investigated input factors 
are non-urgent visits, meaning ‘patients who could have 
been assessed and treated in other facilities that treat less 
urgent cases’.11 In Italy in 2017, only 23% of ED visits 
were classified as red or yellow at triage, while 13%3 had 
a low level of priority, coded white triage in Italy. This use 
of ED services is a signal of lack of continuity of primary 
care and difficulty of access to both primary and specialist 
care. It is also not cost-effective and leads to an increase in 
waiting times in the EDs.12 13

Several factors potentially affect the daily number of 
ED visits. Among these are annual,14 15 seasonal16–19 and 
weekly14–19 periodicity, as well as festivities.14 16 20 21 The 
effect of local weather conditions and pollution on ED 
visit volumes is still being debated: while some studies 
confirmed a significant association with tempera-
ture,15 17–19 22 23 precipitation,17 19 humidity22 and weather 
conditions,23 other authors found these variables to be 
only mediocre predictors of the number of ED visits16 
and found air pollution mostly impacting cardiac and 
respiratory diseases.22 An additional factor that has been 
studied in relation with ED visit volumes is influenza, with 
around 7% of total accesses attributable to influenza-like 
illness (ILI) during the epidemic season.24 Murtas and 
colleagues25 evaluated the hypothesis of the early pres-
ence of the COVID-19 epidemic in Italy by analysing data 
on trends of access to EDs using a Poisson regression 
model adjusted for seasonality and influenza outbreaks. 
In this work, they found that predicting ED visits by 
considering both seasonality and ILI rates, compared 
with a model taking into account only seasonality, notably 
increased the fitting of the model. Therefore, syndromic 
surveillance (such as ILI rates, which in Italy are provided 
weekly by the National Health Service Sentinel System) 
may be able to provide early warning of hospital bed 
capacity strain caused by seasonal respiratory disease.26 
To our knowledge, there is no study linking all this infor-
mation together to ED visits.

The present study aimed to develop a model for fore-
casting ED arrivals using regression-based time-series 
analysis with autoregressive integrated moving average 
(ARIMA) errors, accounting simultaneously for the 
effect of meteorological and environmental variables, as 
well as information on influenza epidemics and festiv-
ities, on the number of ED visits in the city of Milan. 
The model is used to establish an innovative ED warning 
system (WS) providing a planning instrument for hospi-
tals based on past observations and indicators of high 
demand.

METHODS
Study design
This is a retrospective study conducted in the area served 
by the Milan Agency for Health Protection using current 
healthcare databases of daily ED visits aggregated at 
hospital level. No individual-level data were used, and 
patients cannot be identified from aggregated data which 
do not contain low counts (ie, cells with ≤5 counts).27

Study setting and population
We collected all ED visits, including patients registered at 
triage that voluntarily left the ED premises before being 
evaluated by a physician, between 1 January 2014 and 31 
December 2019 in the five largest hospitals located in the 
city of Milan (figure 1). All five hospitals are public hospi-
tals and received 49% of all emergency room access of 
the city of Milan, which has a total of 17 EDs, with a mean 
number of daily ED visits during 2014–2019 ranging from 
124 for hospital C to 247 for hospital E.

Study protocol
Aggregated data on daily ED visit volumes, by age and 
gender, were extracted from the regional health data-
base. Meteorological and environmental information 
was extracted from the Regional Environmental Protec-
tion Agency (ARPA).28 Daily mean temperature, rela-
tive humidity (RH), cumulative precipitation, nitrogen 
dioxide (NO2) and particulate matter with a diameter 
of ≤10 µm (PM10) were collected from two monitoring 
stations (one measuring meteorological indicators and 
one measuring air pollution) located in the centre of 
Milan (figure 1). For the sensitivity analysis, we also inves-
tigated the effect of minimum, maximum and apparent 
temperatures on daily ED visits.29 Missing values on a 
specific day were imputed with the average of the measure 
in that specific year. Weekly data on ILI notifications were 
taken from the National Health Service Sentinel System 
(InfluNet).30 Weekly incidence rates of ILI were expressed 
as the number of cases per 1000 inhabitants per week. All 
available information was linked to daily ED visit volumes 
for each of the five hospitals included in the study. Data-
sets were divided into training (from 1 January 2014 to 
31 December 2018) and validation sets (from 1 January 
2019 to 31 December 2019). For each hospital, we first 
estimated model parameters on the training dataset and 
evaluated postsample accuracy in the validation set. We 
included, in each model, only factors that significantly 
influenced the number of ED visits. Multicollinearity 
was evaluated calculating Pearson pairwise correlation 
between variables and variance inflation criterion (VIF).31

Patient and public involvement
Patients were not involved in this research.

Data analyses
Development of the predictive model
To predict the daily volume of visits in each ED, we used a 
time-series approach consisting of a regression model with 
ARIMA errors.32 The statistical units were days, 1826 days 
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in the training set and 365 days in the validation set. This 
model is able to combine two powerful statistical methods: 
linear regression and ARIMA. Linear regression of Y on 
X is usually described by the equation ‍Yt = α+ βxt + ϵt‍, 
where ‍Yt‍ and ‍xt‍ are the values of Y and X at day t; ﻿‍α‍ and 
‍β‍ are the intercept and the slope of the regression line; 
and ‍ϵt‍ is the error of the model at day t (the deviations 
from the fitted line to the observed values) assumed to 
be independent from other values. The ARIMA model 
deals with autocorrelation between errors through two 
components: the autoregressive and the moving average 
(MA) process. The autoregressive component assumes 
that previous observations are good predictors for future 
values, while the MA component allows the model to 
update the predictions if the level of a constant time-
series changes. ARIMA specification is described by three 
parameters (p, d and q), where p is the order of autore-
gression that is the number of time lags; d is the degree of 
differencing (the number of times the data have had past 
values subtracted to make the time-series stationary); and 
q is the order of the MA process. For each hospital, these 
parameters were identified examining total autocorrela-
tion function (ACF) and partial autocorrelation function 
(PACF), as well as statistical significance (p value <0.05), 

and minimal Akaike information criteria (AIC). Day of 
the week and year-round seasonality were controlled 
for by including Fourier terms, a series of sine–cosine 
functions capable of approximating periodicity.20 32 The 
number of Fourier terms was chosen to minimise the AIC 
for each seasonal period (up to seven for day of the week 
seasonality and up to 365 for year-round seasonality). 
Each seasonal component can be written in the model 
equation as

	﻿‍

n∑
j=1

[
αj sin

(
2πjt
m

)
+ βj cos

(
2πjt
m

)]
‍,�

where n is the number of Fourier terms chosen to mini-
mise the AIC (up to seven for day of the week seasonality 
and up to 365 for year-round seasonality) and m is the 
seasonal period (seven for day of the week and 365 for 
year-round seasonality).

Therefore, meteorological and environmental vari-
ables, as well as information on influenza epidemics and 
festivities, were retained in the final model only if statisti-
cally significant. As festivities, we considered Italian public 
holidays with school and office closures: New Year’s Day, 
Epiphany, Easter Sunday and Monday, Italian Liberation 
Day, Labour Day, Foundation of the Italian Republic, 

Figure 1  Location of the five participating hospitals and of meteorological and air pollution monitoring stations in the city of 
Milan.
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assumption day, All Saints’ Day, Saint Ambrose’s Day 
(local patron saint), Feast of the Immaculate Concep-
tion, Christmas Day, Saint Stephen’s Day and New Year’s 
Eve. In addition, we created dummies for specific festivi-
ties that were responsible for a significant variation in the 
number of ED visits: New Year’s Eve and Assumption Day 
(15 August). Diagnostics of the finally selected models 
included the Jarque-Bera test of normality, and correla-
tion among the residuals was obtained according to the 
Ljung-Box test. Variables and tests were considered statis-
tically significant if the p value was <0.05.

The ARIMA model was compared with a simple regres-
sion model (M1) including only meteorological, envi-
ronmental and festivity covariates and with a generalised 
linear model (M2) also including the Fourier terms 
to control for seasonality. P values were calculated by 
comparing the full model (ARIMA) to M1 and M2 using 
the likelihood ratio test.

Forecasting accuracy
Predicted values on validation sets were estimated using 
one-step forecast.32 We estimated parameters only on 
training sets. However, we calculated forecasts on valida-
tion sets using all of the data preceding each observation. 
The accuracy of predictions was evaluated with the mean 
absolute percentage error (MAPE), which expresses, as 
percentages, a unit-free measure of performance:

‍
MAPE = 1

n

n∑
t=1

|yt−ŷt|
yt

∗ 100
‍
,

with ‍yt‍ and ‍̂yt‍, respectively, as the observed and 
predicted numbers of visits at day t, and n the number of 
days in the validation set (n=365 in this study).

High demand definition
We proposed a definition of high ED demand as days 
where the number of visits exceeded the median of the 
preceding 31 days. The days were defined as green (level 
1) if the number of visits exceeded the median by less 
than 5%, yellow (level 2) if between 5% and 10%, red 
(level 3) if higher than or equal to 10%. High demand 
was calculated on the observed and predicted ED visits 
in validation sets; we thus calculated the proportion of 
observed high ED demand that is correctly classified by 
predicted high ED demand (called sensitivity or recall 
metrics for multiclass classification problems).33 In addi-
tion, we calculated the accuracy of predictions as the 
number of correct classifications over the total number of 
observations. All statistical analyses were performed with 
R V.3.6.3.34

To evaluate the proposed definition, we further calcu-
lated high demand as the number of visits exceeding 
the median of the preceding 7, 14 and 21 days and the 
number of visits exceeding the mean of the preceding 7, 
14, 21 and 31 days, defining green, yellow, and red levels 
of high demand as previously discussed. We chose 7, 14 
and 21 lag days in order to adjust for weekly variation in 
the number of ED visits by design. We further calculated 
high demand as defined by the Lombardy Region35: when 

the number of visits exceeded the 91st percentile of the 
previous year time series. Low demand days were defined 
as those with a number of visits smaller than the 25th 
percentile, medium demand days as those with a number 
of visits between the 25th percentile and the 75th percen-
tile, high demand days if between the 75th percentile and 
the 90th percentile, and finally very high demand days if 
over the 91st percentile.

ED warning system
In the month of January 2020, we established an ED WS, 
which was used by the selected hospitals in Milan as a 
planning instrument for EDs and consists in a transmis-
sion of daily reports. This WS continued until February 
when the COVID-19 outbreak started in Italy. According 
to the model choices highlighted by the aforementioned 
methodology (validation and calibration of the model 
were performed with data from 2014 to 2019), parameters 
were updated weekly and used to establish the WS, which 
operated in January 2020. A hypothetical daily report 
received from a hospital on 5 January 2020 can be found 
in figure 2. The report included forecasts of the number 
of visits for the following 2 days, with 95% margin errors 
and a high demand indicator (green, yellow or red). The 
forecasts were made incorporating in the model past 
meteorological and environmental information via an 
application programming interface where 2-day future 
forecasts of meteorological and environmental informa-
tion were provided by ARPA Lombardia. Weekly infor-
mation on ILI was downloaded every week from InfluNet 
and included in the predictive models. Daily reports were 
constructed and dispatched automatically using R and R 
Markdown. During the WS campaign, we established a 
monitoring service capable of estimating daily sensitivity, 
accuracy of predictions and MAPE separately for predic-
tion 1 and 2 days ahead.

All analyses were performed with R software V.4.0.2 (R 
Core Team, Vienna, Austria); models and Fourier terms 
were estimated, respectively, using the Arima and the 
Fourier functions in the R package forecast36 using the 
parameter xreg for covariate specification. VIF was calcu-
lated using the VIF function in the car package.37

RESULTS
ED visit volumes
Between 1 January 2014 and 31 December 2019 (training 
set of 1826 and validation set of 365 days), we observed 
2 223 479 visits, 370 633 on average every year. Daily mean 
number of visits by hospital, temporal, meteorological and 
patient characteristics in the training sets are summarised 
in table 1. Missingness, over the whole period of 2014–
2019, in meteorological and environmental variables was 
found in 8 days for temperature, 7 days for precipitation 
and 37 days for humidity. Description of training and 
validation sets, and plots of each hospital’s time series 
are summarised in online supplemental table 1 online 
supplemental file 1. The Pearson correlation between 
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Figure 2  Hypothetical daily report received from a hospital on 5 January 2020. ED, emergency department.

 on A
pril 26, 2022 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2021-056017 on 26 A

pril 2022. D
ow

nloaded from
 

http://bmjopen.bmj.com/


6 Murtas R, et al. BMJ Open 2022;12:e056017. doi:10.1136/bmjopen-2021-056017

Open access�

predictors varied from weak (absolute correlation <0.3) 
to moderate (absolute correlation between 0.3 and 0.7), 
with a maximum of −0.67 between temperature and ILI 
and 0.61 between NO2 and PM10. VIF was smaller than 5 
for all variables, with a maximum of 2.8 for temperature 
and 1.9 for ILI. We therefore included all the variables 
in the models, selecting the final model according to the 
statistical significance of predictors and minimal AIC.

Model specification and ARIMA results
All models showed a very strong day of the week and year-
round seasonality effect, according to ACF and PACF plots. 

To normalise residuals, outliers (in the training sets only) 
were replaced by the mean of the observations of the same 
day in the other years; consequently, all models showed 
residual normally distributed according to the Jarque-
Bera test (number of replaced outliers are presented in 
online supplemental table 2). All models showed a lack 
of fitting on New Year’s Eve and/or 15 August; for this 
reason, we chose to define a specific dichotomous vari-
able (‘1’ for the peculiar festivity and ‘0’ for the other 
days) capable of detecting this extra variation. Table  2 
displays the ARIMA parameters fitted for each model 

Table 1  Total number of visits and mean number of daily visits by hospital, temporal and meteorological factors, and patient 
characteristics between 1 January 2014 and 31 December 2019 in five emergency departments of the city of Milan, Italy

n (%)* Mean (min–max)†
Cumulative 
precipitation (mm) n (%)‡ Mean (min–max)§

Hospitals

 � A 421 741 (19) 192 (107–301) ≤0.6 1 678 953 (75.5) 1018 (563–1295)

 � B 457 021 (20.6) 209 (65–302) 0.7+ 544 526 (24.5) 1005 (627–1392)

 � C 272 308 (12.2) 124 (61–197) NO2 (μg/m3)

 � D 530 519 (23.9) 242 (125–337) ≤32 564 957 (25.4) 974 (563–1295)

 � E 541 890 (24.4) 247 (133–346) 33–44 570 284 (25.6) 1022 (723–1292)

 � Total 2 223 479 1015 (563–1392) 45–57 536 484 (24.1) 1032 (698–1392)

Gender 58+ 551 754 (24.8) 1035 (693–1272)

 � F 1 113 405 (50.6) 508 (277–782) PM10 (μg/m3)

 � M 1 087 903 (49.4) 497 (277–661) ≤20 571 339 (25.7) 990 (563–1261)

Age 21–29 575 530 (25.9) 1017 (688–1295)

 � ≤14 360 600 (16.4) 165 (55–443) 30–44 544 147 (24.5) 1023 (710–1392)

 � 15–65 1 307 139 (59.4) 597 (317–860) 45+ 532 463 (23.9) 1032 (693–1272)

 � 66+ 533 569 (24.2) 244 (141–385) ILI (number of weekly 
new cases per 1000 
inhabitants)

N (%)‡ Mean (min–max)§

Temperature (°C) ≤1.2 1 310 096 (58.9) 1001 (563–1295)

 � ≤9.2 564 744 (25.4) 1021 (693–1392) 1.3–2.5 303 072 (13.6) 1031 (799–1256)

 � 9.3–15.6 563 764 (25.4) 1033 (813–1261) 2.6–5.6 303 102 (13.6) 1031 (698–1261)

 � 15.7–22.3 563 757 (25.4) 1025 (656–1295) 5.7+ 307 209 (13.8) 1045 (693–1392)

 � 22.4+ 531 214 (23.9) 980 (563–1292) Day before/after 
festivity

Relative humidity 
(%)

No 2 096 838 (94.3) 1012 (563–1392)

 � ≤50 560 870 (25.2) 1018 (563–1295) Yes 126 641 (5.7) 1055 (688–1295)

 � 51–62 552 865 (24.9) 1009 (637–1292) Festivity

 � 63–76 554 041 (24.9) 1017 (627–1392) No 2 144 726 (96.5) 1018 (677–1392)

 � 77+ 555 703 (25) 1016 (786–1278) Yes 78 753 (3.5) 938 (563–1253)

*Total number of visits by hospital, gender and age. The percentages of the number of visits out of the total (2 223 479 total number of 
visits; 2 201 308 with information on age and gender) are in parentheses.
†Mean, minimum and maximum number of daily visits by hospital, gender and age.
‡Total number of visits by temporal and meteorological factors (ie, total number of visits in days with a particular value of temperature, 
humidity, etc). The percentages of the number of visits of the total (2 223 479 total number of visits) are in parentheses.
§Mean, minimum and maximum number of daily visits by temporal and meteorological factors (ie, mean number of daily visits in the 
days with a particular value of temperature, humidity, etc).
F, female; ILI, influenza-like illness; M, male; NO2, nitrogen dioxide; PM10, particulate matter with a diameter of ≤10 µm.

 on A
pril 26, 2022 by guest. P

rotected by copyright.
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2021-056017 on 26 A

pril 2022. D
ow

nloaded from
 

https://dx.doi.org/10.1136/bmjopen-2021-056017
http://bmjopen.bmj.com/


7Murtas R, et al. BMJ Open 2022;12:e056017. doi:10.1136/bmjopen-2021-056017

Open access

and the number of Fourier terms that minimised AIC. 
All models were non-stationary in mean and needed one 
differencing to make the time-series stationary (d=1). 
ARIMA parameters and Fourier terms were different 
across hospitals, showing that each time series needed 
different model specification. table  2 also displays, for 
each hospital, the factors that significantly influenced 
the number of ED visits and that were included in the 
models. High temperatures were always associated with a 
statistically significant increase in ED visit volumes, with a 
maximum increase of 1.84 daily visits every 1°C increase 
(hospital E, SE 0.18). RH was significantly associated with 
a limited decrease of total ED visits (−0.08, SE 0.04) for 
a 1% increment of RH only at hospital D. High levels 
of cumulative precipitation were associated (except for 
hospital C) with a statistically significant decrease in ED 
visits, with a maximum decrease of 0.31 daily visits every 
1 mm of precipitation (hospital E, SE 0.06). Concerning 
air pollution, we found an opposite effect of NO2 and 
PM10 on ED visits, with a mild significant negative effect 
for NO2 in two hospitals (−0.08 and −0.09) and an even 
milder positive association with PM10 in one (0.03). 
Except for hospital C, the effect of ILI was always asso-
ciated with the number of ED visits, showing an increase 
of daily visits between 0.73 and 1.74 (SE 0.29 and 0.41, 
respectively) at every unit increase in weekly ILI rates. 
Festivities were associated with a decrease in ED visits of 
between 13 and 28 (SE 1.45 and 1.98), while special festiv-
ities were associated with the greatest decrease of at least 

42 ED visits (SE 4.94). ACF and correlation among resid-
uals according to the Ljung-Box test by hospital and up 
to 30 and 366 lags can be found in online supplemental 
figure 1. ACF plots of residuals were overall in signif-
icance limits and the Ljung-Box test showed overall no 
significant correlation between residuals at different lags, 
except Hospital E, which showed residual autocorrelation 
up to lag 366.

Forecasting accuracy and high demand definition
The accuracy of predictions (MAPE) in the validation 
sets, sensitivity and accuracy between observed and 
predicted high ED demand are displayed in table  3. 
Model performance was good, with small MAPEs in vali-
dation sets, ranging from a minimum of 5.5% for hospital 
D to a maximum of 8.1% for hospital C. The models 
showed high sensitivity on days with green-level high 
demand; almost 90% of days with predicted green-level 
high demand were confirmed from observed values. On 
days with yellow-level high demand, sensitivity between 
predicted and observed demand was scarce, ranging from 
0.04 for hospital B to 0.28 for hospital A. Sensitivity of 
red-level high demand varied between hospitals, with a 
minimum of 0.25 for hospital A to a maximum of 0.57 
for hospital D. Observing table 3, we can suggest that, for 
each hospital, at least 54% of the observed red-level high 
demand days were classified, from predictions, as being 
at least yellow-level. Accuracy was high, with at least 67% 

Table 2  ARIMA specifications and covariate effects on the number of ED visits between 1 January 2014 and 31 December 
2018 (training sets)

 �
 �

Hospitals

A B C D E

Model 
specification

ARIMA parameters 
(p, d and q)

(0, 1, 2) (1, 1, 1) (1, 1, 2) (1, 1, 1) (1, 1, 1)

 �  Fourier terms* 3, 13 3, 14 3, 13 3, 16 3, 15

Covariate 
effects (SE)†

Temperature (°C) 1.29 (0.15) 1.23 (0.14) 0.68 (0.11) 1.16 (0.18) 1.84 (0.18)

 �  Humidity (%) −0.08 (0.04)

 �  Precipitation (mm) −0.2 (0.05) −0.12 (0.05) −0.13 (0.07) −0.31 (0.06)

 �  NO2 (μg/m3) −0.08 (0.03) −0.09 (0.04)

 �  PM10 (μg/m3) 0.03 (0.02)

 �  ILI (weekly new cases 
per 1000 inhabitants)

1.74 (0.41) 1.05 (0.37) 0.73 (0.29) 0.97 (0.46)

 �  Festivity −28.23 (1.98) −12.96 (1.45) −25.42 (2.23) −14.56 (2.39)

 �  Special festivity‡ −43.16 (6.31) −57.64 (6.36), 
−62.61 (6.29)

−42.06 (4.92) −59.86 (7.58) −63.24 (7.92)

 �  Day before/after 
festivity

7.14 (1.5) 9.06 (1.58) 3.75 (1.22) 13.89 (1.96)

*Number of sine and cosine terms used to approximate day of the week and year-round seasonality.
†Parameter estimates and SEs in parentheses. Predictors were retained in the final model only if statistically significant (p value <0.05).
‡New Year’s Eve for hospitals A, C and D, and New Year’s Eve and 15 August for hospital B.
.ARIMA, autoregressive integrated moving average; ILI, influenza-like illness; NO2, nitric oxide; PM10, particulate matter with a diameter of 
≤10 µm.
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of the days with exactly the same predicted and observed 
high demand level (green, yellow or red).

All ARIMA models fitted the data significantly better 
than a simple regression model (M1) and a generalised 
linear model (M2), with MAPE for M1 and M2 above 
13.5% and 9.8%, respectively (online supplemental 
Table 3). Observed and predicted ED visits in the valida-
tion sets (from 1 January 2019 to 31 December 2019) by 
date and hospital can be found in online supplemental 
figure 2. In online supplemental table 2, we compared 
ARIMA results for different temperature specifications: 
mean, minimum, maximum and apparent temperature. 
The greatest effect on ED visits was attributed to mean 
temperature, while indicators of performance and AIC 
where generally superior for mean temperature compared 
with minimum, maximum and apparent temperature. In 
online supplemental table 2, we also calculated, only for 
outlier days, the relative error mean of observed versus 
predicted values in order to evaluate if extreme tempera-
tures were better outlier predictors than mean tempera-
ture. Number of outliers replaced ranged from two for 
hospital A to seven for hospital D; results suggested an 
overall better fit of outliers using minimum temperature 
(three out five hospitals with smaller relative errors).

In online supplemental table 4, we compared the high 
demand definition used in the ED WS with similar defi-
nitions. There was slight improvement in percentage 
accuracy between the definition used and the other 
algorithms, and there was no favourite algorithm for 
all hospitals: hospital B had a maximum improvement 
of 4% using the mean of the preceding 31 days or the 
median of the proceeding 21 days; hospitals A and C had 

an improvement of 2% using the mean of the preceding 
31 days; hospital D had an improvement of 2% using the 
mean of the preceding 21 days; and finally hospital E had 
an improvement of 1% using the mean of the preceding 
21 or 31 days. Using the high demand definition used by 
the Lombardy Region, we did not find any improvement 
in accuracy, with an overall percentage of matched classi-
fication between 50% and 64%. High demand was always 
predicted less well compared with the definition used in 
our ED WS. However, results showed good prediction of 
very high demand days with a sensitivity between 38% and 
67%.

ED warning system
In table  4A,B we provided the accuracy of predictions 
(MAPE), sensitivity and accuracy between observed and 
predicted high ED demands in January (the operating 
period of the WS) for horizons of 1 and 2 days. Errors of 
prediction (MAPE) were slightly higher than in the valida-
tion set, with MAPE for 1-day horizon always smaller than 
MAPE for 2 days horizons. Accuracy between observed 
and predicted high ED demand was never smaller than 
0.45 and generally smaller than in the validation set.

DISCUSSION
In this work we proposed and implemented in daily 
practice, a system to predict the number of ED visits in 
five hospitals of the city of Milan. The system is based 
on regression models with ARIMA errors, where ARIMA 
parameters were allowed to vary between hospitals, 
according to their specific characteristics, and it provides 

Table 3  Indicators of performance of the developed models: accuracy of predictions (MAPE) in the validation sets, and 
accuracy and sensitivity of high demand classification

Hospital MAPE Accuracy (%) Observed high ED demand

Predicted high ED demand (%, Sensitivity)

Green Yellow Red

A 5.9 72 Green 93 6 1

Yellow 64 28 8

Red 46 29 25

B 5.7 72 Green 92 8 0

Yellow 85 4 11

Red 35 15 50

C 8.1 67 Green 88 8 4

Yellow 78 10 12

Red 45 20 35

D 5.5 76 Green 91 6 3

Yellow 65 27 8

Red 35 9 56

E 6.1 74 Green 90 8 2

Yellow 59 24 17

Red 34 28 38

.ED, emergency department; MAPE, mean absolute percentage error.
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daily reports on the number of visits predicted for the two 
subsequent days at the five hospitals participating in the 
study. The models showed a good overall performance 
with the MAPEs always smaller than 5.5% and 8.1%. Our 
results are slightly better than other studies: Marcilio 
and colleagues20 forecast daily ED visits with Gener-
alised Linear Models, finding MAPEs between 5.4% and 
11.5%, according to different forecasting horizons and 
controlling for temperature effect.

Jones and colleagues,16 using similar models, found 
MAPEs that varied between 8.5% and 15.5%. However, 

Duwalage et al15 using a generalised additive model found 
MAPEs consistently lower than 5% for 14-day forecasts, 
which significantly improved including temperature in 
the model. Although the number of predicted ED visits 
was close to the observed values, and there was good 
sensitivity in predicting mild (green) high demand, there 
was moderate sensitivity in predicting the spike of ED 
visit volumes (red-level high demand) for some hospitals 
and acceptable sensitivity for hospital D. This is particu-
larly important for the scope of this study, which aimed 
to forecast ED visits in order to develop a 2-day WS. For 

Table 4  Accuracy of predictions (MAPE), sensitivity and accuracy between observed and predicted high ED demand in 
January 2020 (the operating period of the Ws) with a 1-day (A) and 2-day (B) horizon

MAPE Accuracy (%) Observed high ED demand

Predicted high ED demand (%, sensitivity)

Green Yellow Red

(A)

Hospital A 7.8 52 Green 94 6 0

Yellow 100 0 0

Red 71 29 0

Hospital B 7.8 81 Green 87 13 0

Yellow 0 100 0

Red 17 17 67

Hospital C 8.6 52 Green 100 0 0

Yellow 67 33 0

Red 73 27 0

Hospital D 6.6 45 Green 55 36 9

Yellow 0 33 67

Red 50 33 17

Hospital E 11 45 Green 100 0 0

Yellow 100 0 0

Red 92 8 0

(B)  �

Hospital A 8.1 55 Green 100 0 0

Yellow 100 0 0

Red 71 29 0

Hospital B 8.6 71 Green 73 27 0

Yellow 0 100 0

Red 25 17 58

Hospital C 9 45 Green 93 7 0

Yellow 83 17 0

Red 82 18 0

Hospital D 7.6 48 Green 50 18 32

Yellow 0 0 100

Red 33 0 67

Hospital E 11.2 45 Green 100 0 0

Yellow 100 0 0

Red 92 8 0

.ED, emergency department; MAPE, mean absolute percentage error.
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this reason, a better predictive performance of the red-
level forecast would be desired. In fact, one of the major 
reasons for ED overcrowding is the shortage of acute 
care bed capacity compared with the huge number of 
visiting patients. Comparing our definition with similar 
definitions, we found a slight improvement in percentage 
accuracy, around 1% and 4%, but there was no a favou-
rite algorithm for all hospitals. Furthermore, using the 
definition of very high demand for ED visits defined by 
the Lombardy Region, we found sensitivity was better 
compared with our models, and we plan to implement 
this in further evolutions of our WS. However, we found 
good sensitivity in classifying observed red-level demand 
as at least yellow from predictions, and accuracy among 
observed and predicted high demand levels was always 
close to 70%. The definition of high ED demand is not 
straightforward as it relies on the specific hospital’s 
characteristics. It is one of the main causes of ED over-
crowding, which is the most problematic issue in EDs, 
thus deserving the effort in trying to predict it. In this 
study, we proposed a definition based on percentage 
increases compared with the median of the preceding 
month to warn EDs of requests rising over the levels they 
managed in the preceding month.

During the operating period of the WS, January 2020, 
we found a worse adaptation of the models than in the 
validation year 2019. This could be due to the ongoing 
outbreak of COVID-19, as ED visits for non-critical prob-
lems were discouraged.38

Concerning potential predictors, we found a strong day 
of the week and year-round seasonality effect, adequately 
captured by the terms used to approximate periodicity 
(Fourier terms). Even if the aim of this work was to develop 
a forecasting model and not an explanatory model, here 
we found statistically significant effects of meteorological 
factors on ED visits. Temperature was always positively 
associated with outcome, with an increase in the number 
of visits for each 1° increase in temperature across hospi-
tals, in accordance with previous results.17 19 23 As reported 
in another study,39 high temperatures are associated with 
ED visits, especially for the most susceptible population, 
as persons with diabetes or cancer, so it is important 
for public health officials to implement adaptation 
measures to manage the impact of high temperatures 
on population health. Here we found a slightly better 
fit for outliers using minimum temperature instead of 
mean temperature. Nonetheless, we decided to include 
mean temperature in the ED WS because it showed the 
greatest effect on ED visits. Further work has to be done 
in order to investigate the role of extreme temperature 
on ED visit fluctuations. The role of precipitations has 
not yet been well established. To our knowledge, only one 
study measured an indirect effect in reducing ED visit 
volumes.19 In accordance with these results, rainy days 
were found to be mildly associated with reduced numbers 
of ED visits. NO2 and PM10 had a mild significant effect 
only in two hospitals and in one hospital, respectively, 
and were discordant, with a negative effect of NO2 and a 

positive effect of PM10 on the number of ED visits. This 
may be explained considering that the effect of pollu-
tion on ED visits is generally exerted and measured on 
respiratory conditions, especially asthma, and/or cardiac 
rather than with total visits, and it may be diluted when 
analysing all ED visits. Only a few studies found a positive 
association of total suspended particles with all visits but 
trauma, going in the same direction as the small signifi-
cant increase in the number of visits related to PM10 we 
found.40 In addition, pollution estimated from the moni-
toring station (classified as from urban traffic) used in 
the analysis might be of a greater magnitude than that 
really observed in each hospital. However, even though 
the hospitals were mostly located on the outskirts of the 
city of Milan, they are all located in urban areas charac-
terised by a similar air pollution pattern. ILIs were found 
to significantly increase the number of ED visits, as found 
by other researchers.41

This study indicated a moderate to good sensitivity in 
predicting high demand, showing some difficulties in 
anticipating the exact red-level days. In the future, we aim 
to investigate models capable of directly predicting ED 
peaks instead of predicting the number of ED visits such 
as copulas used for detecting spikes in signal processing 
in brain circuits42 or machine learning models. Finally, 
when interpreting these results, it is necessary to be aware 
of the possible multicollinearity problem between vari-
ables, which may alter the magnitude and statistical signif-
icance of coefficients. However, according to Vatcheva et 
al,31 only high correlations between variables would result 
in a change of sign of the coefficients, and furthermore, 
VIFs were always smaller than 5. Correlated factors were 
the pollution variables (NO2 and PM10), which were 
never considered in the same model together. Given that 
the highest correlation was found among temperature 
and ILI, the effect of these variables on the number of ED 
visits may potentially be biased due to multicollinearity. 
However, we included both terms in the models, given the 
fact that they have an effect on ED visits independently 
from one another.

Another limitation is the choice of the hospitals consid-
ered for this work, that is, major hospitals located in the 
city of Milan. This methodology might not be feasible for 
use by small hospitals as they might have low counts or 
even no visits at all on particular days. A solution can be 
provided by implementing different statistical models, 
for example, negative binomial or zero-inflated Poisson 
models, and would be one of our aims in the next years.

High-demand ED forecasting has a dual nature that 
should be addressed: first, knowing in advance the 
number of expected visits would allow a more reasoned 
choice of the hospital to which request assistance, and 
second, forecasts should be followed immediately by an 
evaluation of the available beds and of the staff needed 
to accommodate these expected visits. These two prob-
lems were not addressed in this work, given that this 
study was intended to estimate ED demand only and 
does not include information on hospital capacity but 
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are fundamental ingredients that should be considered 
in the future.

In conclusion, we proposed a hospital-specific ED 
WS based on predictive models developed on previous 
attendances that can be used as a planning instrument 
in hospitals to increase resources, and to prevent high 
patient demand when a higher number of attendances 
is expected. This is important in any health system that 
usually deals with scarcity of resources, and it is crucial in 
a system where use of ED services for non-urgent visits is 
still high.
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